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1053/302, Funcionários, Belo Horizonte, Minas Gerais, CEP:30130-131, Brazil
2 Departamento de Fı́sica, Universidade Federal do Espı́rito Santo, Campus Universitário de
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Abstract
In the present paper, we intend to enlarge the axiomatic framework of
non-commutative quantum field theories (QFT). We consider QFT on non-
commutative spacetimes in terms of the tempered ultrahyperfunctions of
Sebastião e Silva corresponding to a convex cone, within the framework
formulated by Wightman. Tempered ultrahyperfunctions are representable by
means of holomorphic functions. As is well known there are certain advantages
to be gained from the representation of distributions in terms of holomorphic
functions. In particular, for non-commutative theories the Wightman functions
involving the �-product, W�

m, have the same form as the standard form Wm. We
conjecture that the functions W�

m satisfy a set of properties which actually will
characterize a non-commutative QFT in terms of tempered ultrahyperfunctions.
In order to support this conjecture, we prove for this setting the validity of some
important theorems, of which the CPT theorem and the theorem on the spin-
statistics connection are the best known. We assume the validity of these
theorems for non-commutative QFT in the case of spatial non-commutativity
only.

PACS numbers: 11.10.Cd, 11.10.Nx
Mathematics Subject Classification: 46F15, 46F20, 81T05

Dedicated to Professor Olivier Piguet on the occasion of his 65th birthday.

1. Introduction

In recent years, many novel questions have emerged in theoretical physics, particularly in
non-commutative quantum field theories (NCQFT), for which a considerable effort has been
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made in order to clarify structural aspects from an axiomatic standpoint [1–6]. Axiomatic
quantum field theory is the program, originally conceived by Gåding and Wightman [7–10],
that aims to study of unified form the fundamental postulates, and their consequences, of the
two pillars apparently opposite to modern physics: relativity theory and quantum mechanics.
The standard formulation of the axioms of quantum field theories is best expressed by the
so-called Wightman axioms, which can be summarized as follows: (I) quantum mechanical
postulates. The states are described by vectors of a Hilbert space H . In H , there exists
a unitary representation of the Poincaré group, whose translation group admits the closed
forward light cone V + = {pµ ∈ R

4 | p2 � 0, p0 � 0} as its spectrum. There is a unique
vacuum state |�o〉 in H , which is the unique state invariant by translations (this is implied
in the uniqueness of the vacuum). (II) Special relativity postulates. The fields transform
covariantly under Poincaré transformations. The microcausality condition imposes that the
fields either commute or anti-commute at spacelike separated points [�(x),�(x ′)]± = 0 for
(x − x ′)2 < 0. (III) Technical postulate. The assumption of a character of distribution takes
an essential place among the basis postulates of quantum field theory. In a mathematical
language, there are some reasons to consider the fields as tempered distributions [7–10]. This
choice is connected with a definition of local properties of distributions. It turns out that all
these postulates can be fully reexpressed in terms of an infinite set of tempered distributions,
called Wightman distributions (or correlation functions of the theory).

By a variety of reasons, the Wightman framework of local QFT turned out to be
too narrow for theoretical physicists, who are interested in handling situations involving
in particular NCQFT. One of the reasons is that the commutation relations for the non-
commutative coordinates [xµ, xν] = iθµν break down the Lorentz group SO(1, 3) to a
residual symmetry SO(1, 1) × SO(2). This happens because the deformation parameter
θµν is assumed to be a constant antisymmetric matrix of length dimension 2. Although an
axiomatic formulation has been proposed based on the residual symmetry SO(1, 1) × SO(2)

[1–6], a serious inconvenience arises of this analysis: the subgroup SO(1, 1) × SO(2) does
not allow particles to be classified according to the four-dimensional Wigner particle concept
[11–13].

Another reason why the framework of local QFT turned out to be too narrow is that
NCQFT are nonlocal. This can have implications on highly physical properties. For example,
in the formulation of general properties of a field theory the localization plays a fundamental
role in the concrete realization of the locality of field operators in coordinate space and
spectral condition in energy–momentum space, which are achieved through the localization of
test functions—the fields are considered tempered functionals on the Schwartz’s test function
space, the space of rapidly decreasing C∞-functions. However, the nonlocal character of
the interactions in NCQFT seems to indicate that fields are not tempered. In fact, as it was
emphasized in [1], the existence of hard infrared singularities in the non-planar sector of the
theory, induced by uncancelled quadratic ultraviolet divergences, can destroy the tempered
nature of the Wightman functions. Besides, the commutation relations [xµ, xν] = iθµν also
imply uncertainty relations for spacetime coordinates �xµ�xν ∼ |θµν |, indicating that the
notion of spacetime point loses its meaning. Spacetime points are replaced by cells of area of
size |θµν |. This observation has led physicists to suggest the existence of a finite lower limit to
the possible resolution of distance. Instead, the nonlocal structure of NCQFT manifests itself
in the delocalization of the interaction regions, which spread over a spacetime domain whose
size is determined by the existence of a minimum length �θ related to the scale of nonlocality
�θ ∼ √

θ [14]. Among other things, the existence of this minimum length renders impossible
the preservation of the local commutativity condition, so it is unclear why we should even
consider the microcausal condition based on local fields as in [1, 2, 15].
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These are some very important evidences to expect that the traditional Wightman axioms
must be somewhat modified within the context of NCQFT4. From our point of view, the
spacetime non-commutativity can be accommodated simply by choosing a space of generalized
functions different from the usual space of Schwartz’s tempered distributions. As a matter
of fact, in a fundamental formulation of QFT, the mathematical problem can be seen as a
problem of the choice of the right class of generalized functions which is appropriate for the
representation of quantum fields. Thus, the class of generalized functions which one should
use in the formulation of NCQFT remains an open problem still to be fully understood.

Some attempts have been made to extend the framework formulated by Wightman for
NCQFT, so as to include a wider class of fields [3, 6]. It has been suggested that NCQFT
should be formulated in terms of generalized functions over the space of analytic test functions
S0 [21–27], exploring some ideas by Soloviev to nonlocal quantum fields [24–27]5. In this
case, the fields are so singulars that, of course, one of the conceptual problems we are faced
is to find an adequate generalization of the causality condition. Soloviev has suggested to
replace the ordinary causality condition by an asymptotic causality condition. Despite its
apparent weakness, the asymptotic causality condition in the sense of Soloviev yet one allows
us to show the validity of the CPT theorem and the spin-statistic connection for NCQFT [3].
And more, the existence of a Borchers class for a non-commutative field is shown [4]. On the
other hand, recently, different definitions of perturbative theory to NCQFT [30, 31] seem to
point out that the nonlocal interactions in NCQFT improve the UV behavior of theory. It is
therefore reasonable to consider another space of test functions where the fields are not highly
singulars as adopted in [3, 6].

In this paper, we present an alternative approach. Because NCQFT suggest the existence
of a minimum length �θ , we will assume as space of test functions for NCQFT the space H of
rapidly decreasing entire functions in any horizontal strip. The elements of the dual space of
the space H are the so-called tempered ultrahyperfunctions [32–47] and have the advantage
of being representable by means of holomorphic functions. Tempered ultrahyperfunctions
generalize the notion of hyperfunctions on R

n but cannot be localized as hyperfunctions.
Because of this, NCQFT of this sort will be called quasilocal, namely, the fields are localizable
only in regions greater than the scale of nonlocality �θ . We shall walk along the general
lines proposed recently by Brüning–Nagamachi [45]. They have conjectured that tempered
ultrahyperfunctions, i.e., those ultrahyperfunctions which admit the Fourier transform as an
isomorphism of topological vector spaces, are well adapted for their use in quantum field theory
with a fundamental length. In particular, we shall consider tempered ultrahyperfunctions in a
setting which includes the results of [32–34] as special cases, by considering functions analytic
in tubular radial domains [40, 46, 47]. We shall denote the NCQFT in terms of tempered
ultrahyperfunctions by UHFNCQFT for brevity hereafter.

The presentation of the paper is organized as follows. In section 2, for the convenience
of the reader, we present the reasons why tempered ultrahyperfunctions are well adapted for
their use in NCQFT, going through a simple example taken from [45]. Section 3 contains an
exposition of the theory of tempered ultrahyperfunctions, where we include and prove some
results which are important in applications to quantum field theory. Section 4 is devoted to

4 The act of attempting to modify the Wigtman axioms by proposing another space of test functions is quite an old
subject [16, 17]. Several suggestions have been made to extend the Wightman axioms for the quantum field theory
so as to include a wider class of fields, see for example [18–20].
5 More recently, Chaichian et al [28] have obtained a result that the appropriate space of test functions in the Wightman
approach to non-commutative quantum field theory is one of the Gel’fand–Shilov spaces Sβ , with β < 1/2 [29]. The
authors of [3, 6] assume β = 0 in order to emphasize that this is the smallest space among the Gel’fand–Shilov spaces
Sβ traditionally adopted in nonlocal quantum field theory, as indicated from non-commutative quantum field theory.
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the formulation of the axioms for UHFNCQFT in terms of the Wightman functionals. How
the properties of the Wightman functionals change when we pass to the test function space
which are entire analytic functions of rapid decrease in any horizontal strip is considered. In
section 5, we derive for our UHFNCQFT the validity of some important theorems, obtained
previously for essentially nonlocalizable fields [3, 4, 6]. These include the existence of
CPT symmetry and the connection between spin and statistics for UHFNCQFT. Throughout
the paper we assume only the case of space–space non-commutativity, i.e., θ0i = 0, with
i = 1, 2, 3. It is well known that if there is spacetime non-commutativity, the resulting
theory violates the causality and unitarity [48, 49]. For most our purposes, we consider for
simplicity a theory with only one basic field, a neutral scalar field. Section 6 is reserved for
our concluding remarks.

2. Motivation

For the sake of completeness in the exposition, we recall the example which has motivated
Brüning–Nagamachi [45] to conjecture that tempered ultrahyperfunctions are suitable in order
to treat quantum field theories with a minimum length. Consider the Dirac delta measure
δ(x + a), which when applied to a continuous function f (x) produces the value f (−a):∫

δ(x + a)f (x) dx = f (−a).

By using a generalization of the Cauchy’s integral formula, we define δ(x + a) applied to a
holomorphic function f (z) on an open set � ⊂ C. Assuming that 0 ∈ � and letting γ = ∂�

denote the boundary of �, we have

1

2π i

∮
γ

f (z)

z + a
dz = f (−a), for z ∈ �. (2.1)

Define H(T (−�, �)) as being the space of all holomorphic functions f (z) on T (−�, �) =
R

n + i(−�, �) ⊂ C. In this case, from (2.1), for f (z) ∈ H(T (−�, �)) and |a| < �, f (−a) can
be given by the Taylor’s series of center in zero:

f (−a) =
∞∑

n=0

(−a)n

n!
f (n)(0).

This series possesses the functional representation

F(f ) =
∫ [ ∞∑

n=0

an

n!
δ(n)(x)

]
f (x) dx =

∞∑
n=0

(−a)n

n!
f (n)(0)

= f (−a) =
∫

δ(x + a)f (x) dx.

Thus, as an equation for functionals defined on the function space H(T (−�, �)), we have the
identification

∞∑
n=0

an

n!
δ(n)(x) = δ(x + a),

in the distributional sense. In other words, the sequence of generalized functions

SN =
N∑

n=0

an

n!
δ(n)(x),
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with support {0}, weakly converges to the generalized function δ(x + a) with support {−a},
as N → ∞. However, if |a| > �, this sequence does not converge in the dual space of
H(T (−�, �)).

The motivation for suggesting that tempered ultrahyperfunctions are well adapted for their
use in quantum field theory with a fundamental length lies in the following fact: the nonlocal
structure of the functional F is represented by a dislocation of the support from {0} to {−a}.
According to Brüning–Nagamachi [45], this means that, if |a| < �, then the elements in the
dual space of H(T (−�, �)) do not distinguish between the points {0} to {−a}, but if |a| > �

the elements in H′(T (−�, �)) can distinguish between the points {0} to {−a}. Since |a| < � is
arbitrary, one can say that the elements in H′(T (−�, �)) distinguish points only in spacetime
regions large in comparison with �. This is the reason why we discuss here a mathematically
more satisfactory approach for NCQFT. The tempered ultrahyperfunctions have this property.

Remark 1. Such an example was already considered in 1958 by Güttinger [50] in order
to treat certain exactly soluble models which would correspond to field theories with non-
renormalizable interactions.

3. Tempered ultrahyperfunctions

The interest in tempered ultrahyperfunctions arose simultaneously with the growing interest
in various classes of analytic functionals and various attempts to develop a theory of such
functionals which would be analogous to the Schwartz theory of distributions. Tempered
ultrahyperfunctions were first introduced in papers of Sebastião e Silva [32, 33] and Hasumi
[34] as the strong dual of the space of test functions H of rapidly decreasing entire functions in
any horizontal strip. As a matter of fact, these objects are equivalence classes of holomorphic
functions defined by a certain space of functions which are analytic in the 2n octants in C

n and
represent a natural generalization of the notion of hyperfunctions on R

n, but are nonlocalizable.
In this section, we recall some basic properties of the tempered ultrahyperfunction space which
are the most important in applications to quantum field theory.

To begin with, we shall define our notation. We will use the standard multi-index notation.
Let R

n (resp. C
n) be the real (resp. complex) n-space whose generic points are denoted by

x = (x1, . . . , xn) (resp. z = (z1, . . . , zn)), such that x + y = (x1 + y1, . . . , xn + yn), λx =
(λx1, . . . , λxn), x � 0 means x1 � 0, . . . , xn � 0, 〈x, y〉 = x1y1 + · · · + xnyn and
|x| = |x1|+ · · ·+ |xn|. Moreover, we define α = (α1, . . . , αn) ∈ N

n
o , where No is the set of non-

negative integers, such that the length of α is the corresponding �1-norm |α| = α1+· · ·+αn, α+β

denotes (α1 +β1, . . . , αn +βn), α � β means (α1 � β1, . . . , αn � βn), α! = α1! · · ·αn!, xα =
x

α1
1 · · · xαn

n , and

Dαϕ(x) = ∂ |α|ϕ(x1, . . . , xn)

∂x
α1
1 ∂x

α1
2 · · · ∂x

αn
n

.

Let � be a set in R
n. Then we denote by �◦ the interior of � and by � the closure of

�. For r > 0, we denote by B(xo; r) = {x ∈ R
n | |x − xo| < r} an open ball and by

B[xo; r] = {x ∈ R
n | |x − xo| � r} a closed ball, with center at point xo and of radius

r = (r1, . . . , rn), respectively.
We consider two n-dimensional spaces—x-space and ξ -space—with the Fourier transform

defined as

f̂ (ξ) = F [f (x)](ξ) =
∫

R
n

f (x) ei〈ξ,x〉 dnx,

5
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while the Fourier inversion formula is

f (x) = F−1[f̂ (ξ)](x) = 1

(2π)n

∫
R

n

f̂ (ξ) e−i〈ξ,x〉 dnξ.

The variable ξ will always be taken real while x will also be complexified—when it is complex,
it will be noted as z = x +iy. The above formulae, in which we employ the symbolic ‘function
notation’, are to be understood in the sense of distribution theory.

We shall consider the function

hK(ξ) = sup
x∈K

|〈ξ, x〉|, ξ ∈ R
n,

the indicator of K, where K is a compact set in R
n. hK(ξ) < ∞ for every ξ ∈ R

n since K
is bounded. For sets K = [−k, k]n, 0 < k < ∞, the indicator function hK(ξ) can easily be
determined:

hK(ξ) = sup
x∈K

|〈ξ, x〉| = k|ξ |, ξ ∈ R
n, |ξ | =

n∑
i=1

|ξi |.

Let K be a convex compact subset of R
n, then Hb(R

n;K) (b stands for bounded) defines the
space of all functions in C∞(Rn) such that ehK(ξ)Dαf (ξ) is bounded in R

n for any multi-index
α. One defines in Hb(R

n;K) seminorms

‖ϕ‖K,N = sup
ξ∈R

n

α�N

{ehK(ξ)|Dαf (ξ)|} < ∞, N = 0, 1, 2, . . . . (3.1)

Now, let T (�) = R
n + i� ⊂ C

n be the tubular set of all points z, such that yi = Im zi

belongs to the domain �, i.e., � is a connected open set in R
n called the basis of the tube

T (�). Let K be a convex compact subset of R
n, then Hb(T (K)) defines the space of all C∞

functions ϕ on R
n which can be extended to C

n to be holomorphic functions in the interior
T (K◦) of T (K) such that the estimate

|ϕ(z)| � C(1 + |z|)−N (3.2)

is valid for some constant C = CK,N(ϕ). The best possible constants in (3.2) are given by a
family of seminorms in Hb(T (K)):

‖ϕ‖T (K),N = sup
z∈T (K)

{(1 + |z|)N |ϕ(z)|} < ∞, N = 0, 1, 2, . . . . (3.3)

Next, we consider a set of results which will characterize the spaces introduced above.

Lemma 3.1. If Ki ⊂ Ki+1 are two convex compact sets, then the following canonical injections
hold: (i) Hb(T (Ki+1)) ↪→ Hb(T (Ki)), (ii) Hb(R

n;Ki+1) ↪→ Hb(R
n;Ki).

Proof. We prove the first item. If Ki ⊂ Ki+1 and ϕ ∈ Hb(T (Ki+1)), then ϕ ∈ Hb(T (Ki)). By
taking the restriction of ϕ ∈ Hb(T (Ki+1)) to T (Ki), it follows that

sup
z∈T (Ki+1)

{(1 + |z|)j |ϕ(z)|} = sup
z∈T (Ki)

{(1 + |z|)j |ϕ(z)|}.

Therefore, the topology induced by Hb(T (Ki+1)) on Hb(T (Ki)) is identical with the topology
of ϕ ∈ Hb(T (Ki)). The proof of second statement is similar, taking into account the
seminorm (3.1). �

Let O be a convex open set of R
n. To define the topologies of H(Rn;O) and H(T (O))

it suffices to let K range over an increasing sequence of convex compact subsets K1,K2, . . .

contained in O such that for each i = 1, 2, . . . , Ki ⊂ K◦
i+1 and O = ⋃∞

i=1 Ki . Then the spaces

6
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H(Rn;O) and H(T (O)) are the projective limits of the spaces Hb(R
n;K) and Hb(T (K)),

respectively, i.e., we have that

H(Rn;O) = lim proj
K⊂O

Hb(R
n;K), (3.4)

and

H(T (O)) = lim proj
K⊂O

Hb(T (K)), (3.5)

where the projective limit is taken following the restriction mappings according to lemma 3.1.

Remark 2. Any C∞ function of exponential growth is a multiplier in H(Rn;O), while that
any C∞ function which can be extended to be an entire function of polynomial growth is a
multiplier in H(T (O)). Besides, the space H(Rn;O) is continuously embedded into Schwartz
space S (Rn), and elements of S (Rn) are also multipliers for the space H(Rn;O) [34].

Lemma 3.2. The spaces H(T (O)) and H(Rn;O) are Hausdorff locally convex spaces.

Proof. First, we prove that H(T (O)) is a Hausdorff locally convex space. Let {Ki}i=1,2,... be
the usual increasing sequence of compact subsets of O, whose union is O, and such that with
Ki as the closure of its interior, K◦

i+1; for all i, Ki ⊂ K◦
i+1. We shall prove that each element

of the base for neighborhoods of 0 generated by the open balls

Bi,n(0) = {
ϕ ∈ H(T (Ki)) | ‖ϕ‖T (Ki),j = sup

z∈T (Ki)

[(1 + |z|)j |ϕ(z)|] < n−1, n ∈ N
}

contains at least one convex neighborhood of 0. For this, it is sufficient to show that there
exist natural numbers �, n′ such that B�,n′(0) ⊂ Bi,n(0). In fact, one can always choose �

such that K� ⊂ Ki . Then, ‖ϕ‖T (K�),j � ‖ϕ‖T (Ki),j if n < n′ and � � i. Now, consider
‖λϕ1 + (1 − λ)ϕ2‖T (O),j , with 0 � λ � 1 and ϕ1, ϕ2 ∈ B�,n′(0). But,

‖λϕ1 + (1 − λ)ϕ2‖T (O),j � ‖λϕ1‖T (O),j + ‖(1 − λ)ϕ2‖T (O),j

� λ‖ϕ1‖T (O),j + (1 − λ)‖ϕ2‖T (O),j

< λn−1 + (1 − λ)n−1 = n−1.

Hence, λϕ1 + (1 − λ)ϕ2 ∈ B�,n′(0). This proves that H(T (O)) is locally convex. Now, let
ϕ1, ϕ2, ψ ∈ H(T (O)). Consider that for the pair of distinct functions ϕ1, ϕ2, ‖ϕ1−ϕ2‖T (O),j =
ε > 0. Let φ(ϕi) = Bε/3(ϕi) = {ψ ∈ H(T (O)) | ‖ϕi−ψ‖T (O),j < ε/3, i = 1, 2}. For if ψ ∈
φ(ϕ1)∩φ(ϕ2), we have ‖ϕ1−ψ‖T (O),j < ε/3 and ‖ϕ2−ψ‖T (O),j < ε/3. Therefore, it follows
that ε = ‖ϕ1−ϕ2‖T (O),j = ‖ϕ1−ψ+ψ−ϕ2‖T (O),j � ‖ϕ1−ψ‖T (O),j +‖ϕ2−ψ‖T (O),j < 2ε/3,
which is a contradiction. Hence, H(T (O)) is Hausdorff. The proof that H(Rn;O) is a
Hausdorff locally convex space is immediate, by considering that the base for neighborhoods
of 0 is generated by the open balls

Bi,n(0) = {
ϕ ∈ H(Rn;Ki) | ‖ϕ‖Ki,j = sup

x∈R
n;α�j

{ehKi
(ξ)|Dαf (ξ)|} < n−1, n ∈ N

}
,

and the proof is complete. �

Theorem 3.3. The spaces H(T (O)) and H(Rn;O) are Fréchet spaces.

Proof. That H(T (O)) is metrizable is clear from theorem V.5 in [51], if we endow the space
H(T (O)) with the metric d(ϕ1, ϕ2) = ∑∞

i=1 ai‖ϕ1 −ϕ2‖T (O),i/[1 +‖ϕ1 −ϕ2‖T (O),i], such that∑∞
i=1 ai < ∞. Thus, it remains to show that H(T (O)) is complete. Let {ϕn} be a sequence

of functions in H(T (O)). We shall take ϕj ∈ {ϕn}. Given ε > 0, there exists no such that
for p � no and n � no, we have d(ϕj , ϕn) < ε/2 and d(ϕj , ϕp) < ε/2. Then, it follows

7
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that d(ϕp, ϕn) � d(ϕj , ϕp) + d(ϕj , ϕn) < ε/2 + ε/2 = ε. This proves that {ϕn} is Cauchy
and hence H(T (O)) is complete. Thus H(T (O)) is Fréchet. For the proof that H(Rn;O) is
Fréchet see [36] (and in the case of O = R

n see [34]). �

It is an elementary fact that H(T (O)) and H(Rn;O) are Banach spaces.

Theorem 3.4 (Brüning–Nagamachi [45], proposition 2.6). Let O ⊂ R
n be a nonempty convex

open subset. Then the spaces H(T (O)) and H(Rn;O) are nuclear Fréchet spaces and, in
particular, reflexive.

In the light of theorems 3.3 and 3.4, it follows that the spaces H(T (O)) and H(Rn;O)

are barreled [52, corollary 1, p 347] and quasi-complete [52, p.354]. According to Treves
[52, corollary 3, p 520] and Schaefer [53, exercise 19b, p 194], each quasi-complete barreled
nuclear space is a Montel space. Thus, one immediately arrives at

Corollary 3.5. The spaces H(T (O)) and H(Rn;O) are Montel spaces.

Theorem 3.6 ([34, 36, 45]). The space D(Rn) of all C∞-functions on R
n with compact

support is dense in H(Rn;K) and H(Rn;O). Moreover, the space H(Rn; R
n) is dense in

H(Rn;O) and in H(Rn;K), and H(Rm; R
m) ⊗ H(Rn; R

n) is dense in H(Rm+n; R
m+n).

Theorem 3.7 (Kernel theorem [45]). Let M be a separately continuous multilinear
functional on [H(T (R4))]n. Then there is a unique functional F ∈ H′(T (R4n)), for all
fi ∈ H(T (R4)), i = 1, . . . , n, such that M(f1, . . . , fn) = F(f1 ⊗ · · · ⊗ fn).

Theorem 3.8 ([36, 45]). The space H(T (Rn)) is dense in H(T (O)) and the space H(T (Rm+n))

is dense in H(T (O)).

From theorem 3.6 we have the following injections [36]: H ′(Rn;K) ↪→ H ′(Rn; R
n) ↪→

D ′(Rn) and H ′(Rn;O) ↪→ H ′(Rn; R
n) ↪→ D ′(Rn).

Definition 3.9. The dual space H ′(Rn;O) of H(Rn;O) is the space of distributions of
exponential growth.

A distribution V ∈ H ′(Rn;O) may be expressed as a finite order derivative of a continuous
function of exponential growth

V = D
γ

ξ [ehK(ξ)g(ξ)],

where g(ξ) is a bounded continuous function. For V ∈ H ′(Rn;O) the following result is
known:

Lemma 3.10 ([36]). A distribution V ∈ D ′(Rn) belongs to H ′(Rn;O) if and only if there
exist a multi-index γ , a convex compact set K ⊂ O and a bounded continuous function g(ξ)

such that

V = D
γ

ξ [ehK(ξ)g(ξ)].

For any element U ∈ H′, its Fourier transform is defined to be a distribution V of
exponential growth, such that the Parseval-type relation V (ϕ) = U(ψ), ϕ ∈ H,ψ = F [ϕ] ∈
H, holds. In the same way, the inverse Fourier transform of a distribution V of exponential
growth is defined by the relation U(ψ) = V (ϕ), ψ ∈ H, ϕ = F−1[ψ] ∈ H .

Proposition 3.11 ([36]). If ϕ ∈ H(Rn;O), the Fourier transform of ϕ belongs to the space
H(T (O)), for any open convex nonempty set O ⊂ R

n. By the dual Fourier transform
H ′(Rn;O) is topologically isomorphic with the space H′(T (−O)).

8
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Let us now recall very briefly the basic definition of tempered ultrahyperfunctions. These
are defined as elements of a certain subspace of Z′ of ultradistributions of Gel’fand and Shilov
which admit representations in terms of analytic functions on the complement of some closed
horizontal strip of the complex space, and having polynomial growth on the complement of
an open neighborhood of that strip.

Let Hω be the space of all functions f (z) such that (i) f (z) is analytic for {z ∈
C

n | |Im z1| > p, |Im z2| > p, . . . , |Im zn| > p}, (ii) f (z)/zp is bounded continuous in
{z ∈ C

n | |Im z1| � p, |Im z2| � p, . . . , |Im zn| � p}, where p = 0, 1, 2, . . . depends
on f (z) and (iii) f (z) is bounded by a power of z, |f (z)| � C(1 + |z|)N , where C and N
depend on f (z). Define the kernel of the mapping f : H(T (Rn)) → C by Π, as the set
of all z-dependent pseudo-polynomials, z ∈ C

n (a pseudo-polynomial is a function of z of
the form

∑
s zs

jG(z1, ..., zj−1, zj+1, ..., zn), with G(z1, ..., zj−1, zj+1, ..., zn) ∈ Hω). Then,
f (z) ∈ Hω belongs to the kernel Π if and only if f (ψ(x)) = 0, with ψ(x) ∈ H(T (Rn)) and
x = Re z. Consider the quotient space U = Hω/Π. The set U is the space of tempered
ultrahyperfunctions. Thus, we have

Definition 3.12. The space of tempered ultrahyperfunctions, denoted by U (Rn), is the space
of continuous linear functionals defined on H(T (Rn)).

In the following, we will put H = H(Cn) = H(T (Rn)) and the dual space of H will be
denoted by H′.

Theorem 3.13 (Hasumi [34], proposition 5). The space of tempered ultrahyperfunctions U
is algebraically isomorphic to the space of generalized functions H′.

3.1. Tempered ultrahyperfunctions corresponding to a proper convex cone

Next, we consider tempered ultrahyperfunctions in a setting which includes the results of
[32, 34, 36] as special cases, by considering analytic functions in tubular radial domains
[39, 40, 46, 47], and hence includes the important setting for quantum field theory of tube
domains over light cones. All the results below are taken from [46, 47] and hence the proofs
will not be repeated.

We start by introducing some terminology and simple facts concerning cones. An open
set C ⊂ R

n is called a cone if x ∈ C implies λx ∈ C for all λ > 0. Moreover, C is an
open connected cone if C is a cone and if C is an open connected set. In the following,
it will be sufficient to assume for our purposes that the open connected cone C in R

n

is an open convex cone with vertex at the origin and proper, that is, it contains no any
straight line. A cone C ′ is called compact in C—we write C ′ � C—if the projection

prC
′ def= C

′ ∩ Sn−1 ⊂ prC
def= C ∩ Sn−1, where Sn−1 is the unit sphere in R

n. Being given a
cone C in x-space, we associate with C a closed convex cone C∗ in ξ -space which is the set
C∗ = {ξ ∈ R

n | 〈ξ, x〉 � 0,∀x ∈ C}. The cone C∗ is called the dual cone of C. By T (C) we
will denote the set R

n + iC ⊂ C
n. If C is open and connected, T (C) is called the tubular radial

domain in C
n, while if C is only open T (C) is referred to as a tubular cone. In the former case

we say that f (z) has a boundary value U = BV (f (z)) in H′ as y → 0, y ∈ C or y ∈ C ′ � C,
respectively, if for all ψ ∈ H the limit

〈U,ψ〉 = lim
y→0

y∈CorC ′

∫
R

n

f (x + iy)ψ(x) dnx

exists. We will deal with tubes defined as the set of all points z ∈ C
n such that

T (C) = {x + iy ∈ C
n | x ∈ R

n, y ∈ C, |y| < δ},
9
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where δ > 0 is an arbitrary number.
An important example of tubular radial domain used in quantum field theory is the tubular

radial domain with the forward light cone, V+, as its basis

V+ =
⎧⎨⎩z ∈ C

n

∣∣∣∣ Imz1 >

(
n∑

i=2

Im2zi

) 1
2

, Imz1 > 0

⎫⎬⎭ .

Let C be an open convex cone and let C ′ � C. Let B[0; r] denote a closed ball
of the origin in R

n of radius r, where r is an arbitrary positive real number. Denote
T (C ′; r) = R

n + i(C ′\(C ′ ∩ B[0; r])). We are going to introduce a space of holomorphic
functions which satisfy certain estimate according to Carmichael [39]. We want to consider
the space consisting of holomorphic functions f (z) such that

|f (z)| � C(C ′)(1 + |z|)N ehC∗ (y), z ∈ T (C ′; r), (3.6)

where hC∗(y) = supξ∈C∗ |〈ξ, y〉| is the indicator of C∗, C(C ′) is a constant that depends on
an arbitrary compact cone C ′ and N is a non-negative real number. The set of all functions
f (z) which are holomorphic in T (C ′; r) and satisfy the estimate (3.6) will be denoted by H o

c .
Throughout the remainder of this paper T (C ′; r) will denote the set R

n + i(C ′\(C ′ ∩B[0; r])).

Remark 3. The space of functions H o
c constitutes a generalization of the space Ai

ω
of

Sebastião e Silva [32] and the space a
ω

of Hasumi [34] to arbitrary tubular radial domains in
C

n.

Lemma 3.14 ([40, 46]). Let C be an open convex cone and let C ′ � C. Let
h(ξ) = ek|ξ |g(ξ), ξ ∈ R

n, be a function with support in C∗, where g(ξ) is a bounded
continuous function on R

n. Let y be an arbitrary but fixed point of C ′\(C ′ ∩ B[0; r]). Then
e−〈ξ,y〉h(ξ) ∈ L2, as a function of ξ ∈ R

n.

Definition 3.15. We denote by H ′
C∗(R

n;O) the subspace of H ′(Rn;O) of distributions of
exponential growth with support in the cone C∗:

H ′
C∗(R

n;O) = {V ∈ H ′(Rn;O) | supp(V ) ⊆ C∗}. (3.7)

Lemma 3.16 ([40, 46]). Let C be an open convex cone and let C ′ � C. Let
V = D

γ

ξ [ehK(ξ)g(ξ)], where g(ξ) is a bounded continuous function on R
n and hK(ξ) = k|ξ | for

a convex compact set K = [−k, k]n. Let V ∈ H ′
C∗(R

n;O). Then f (z) = (2π)−n(V , e−i〈ξ,z〉)
is an element of H o

c .

We now shall define the main space of holomorphic functions with which this paper is
concerned. Let C be a proper open convex cone and let C ′ � C. Let B(0; r) denote an
open ball of the origin in R

n of radius r, where r is an arbitrary positive real number. Denote
T (C ′; r) = R

n + i(C ′\(C ′ ∩ B(0; r))). Throughout this section, we consider functions f (z)

which are holomorphic in T (C ′) = R
n + iC ′ and which satisfy the estimate (3.6), with B[0; r]

replaced by B(0; r). We denote this space by H ∗o
c . We note that H ∗o

c ⊂ H o
c for any

open convex cone C. Put Uc = H ∗o
c /Π, that is, Uc is the quotient space of H ∗o

c by set of
pseudo-polynomials Π.

Definition 3.17. The set Uc is the space of tempered ultrahyperfunctions corresponding to a
proper open convex cone C ⊂ R

n.

The following theorem shows that functions in H ∗o
c have distributional boundary values

in H′. Further, it shows that functions in H ∗o
c satisfy a strong boundedness property in H′.

10
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Theorem 3.18 ([47]). Let C be an open convex cone and let C ′ � C. Let V = D
γ

ξ [ehK(ξ)g(ξ)],
where g(ξ) is a bounded continuous function on R

n and hK(ξ) = k|ξ | for a convex compact
set K = [−k, k]n. Let V ∈ H ′

C∗(R
n;O). Then

(i) f (z) = (2π)−n(V , e−i〈ξ,z〉) is an element of H ∗o
c ,

(ii) {f (z) | y = Im z ∈ C ′ � C, |y| � Q} is a strongly bounded set in H′, where Q is an
arbitrarily but fixed positive real number,

(iii) f (z) → F−1[V ] ∈ H′ in the strong (and weak) topology of H′ as y = Im z → 0, y ∈
C ′ � C.

The functions f (z) ∈ H ∗o
c can be recovered as the (inverse) Fourier–Laplace transform

of the constructed distribution V ∈ H ′
C∗(R

n;O). This result is a generalization of the Paley–
Wiener–Schwartz theorem for the setting of tempered ultrahyperfunctions.

Theorem 3.19 (Paley–Wiener–Schwartz-type theorem [47]). Let f (z) ∈ H ∗o
c , where C is an

open convex cone. Then the distribution V ∈ H ′
C∗(R

n;O) has a uniquely determined inverse
Fourier–Laplace transform f (z) = (2π)−n(V , e−i〈ξ,z〉) which is holomorphic in T (C ′) and
satisfies the estimate (3.6), with B[0; r] replaced by B(0; r).

The following corollary is immediate from theorem 3.19.

Corollary 3.20 ([45]). Let C∗ be a closed convex cone and K a convex compact set in
R

n. Define an indicator function hK,C∗(y), y ∈ R
n, and an open convex cone CK such

that hK,C∗(y) = supξ∈C∗ |hK(ξ) − 〈ξ, y〉| and CK = {y ∈ R
n | hK,C∗(y) < ∞}. Then the

distribution V ∈ H ′
C∗(R

n;O) has a uniquely determined inverse Fourier–Laplace transform
f (z) = (2π)−n(V , e−i〈ξ,z〉) which is holomorphic in the tube T (C ′

K) = R
n +iC ′

K , and satisfies
the following estimate, for a suitable K ⊂ R

n,

|f (z)| � C(C ′)(1 + |z|)N ehK,C∗ (y), z ∈ T (C ′
K; r) = R

n + i(C ′
K\(C ′

K ∩ B(0; r))) (3.8)

where C ′
K � CK .

The same proof as in Carmichael [40, theorem 1, equation (4)] combined with the proofs
of theorems 3.18 and 3.19 shows that the following theorem is true.

Theorem 3.21. Let C be an open convex cone and let C ′ � C. Let f (z) ∈ H ∗o
c . Then there

exists a unique element V ∈ H ′
C∗(R

n;O) such that

f (z) = F−1[e−〈ξ,y〉V ], z ∈ T (C ′; r) = R
n + i(C ′\(C ′ ∩ B(0; r))), (3.9)

where (3.9) holds as an equality in H′(T (O)).

Remark 4. It is important to remark that in theorems 3.18 and 3.19 we are considering the
inverse Fourier–Laplace transform f (z) = (2π)−n〈V, e−i〈ξ,z〉〉, in opposition to the Fourier–
Laplace transform used in the proof of theorem 1 of [40]. In this case, the proof of
theorem 3.21 is achieved if we consider ξ as belonging to the open half-space {ξ ∈
C∗ | 〈ξ, y〉 < 0}, for y ∈ C ′\(C ′ ∩ B(0; r)), since by hypothesis f (z) ∈ H ∗o

c . Then,
from [54, lemma 2, p 223] there is δ(C ′) such that for y ∈ C ′\(C ′ ∩ B(0; r)) implies
〈ξ, y〉 � −δ(C ′)|ξ ||y|. This justifies the negative sign in (3.9).

In this point, we note the following important fact. Let H′
C(T (O)) denote the subset of

H′(T (O)) defined by H′
C(T (O)) = {U ∈ H′(T (O)) | U = F [V ], V ∈ H ′

C∗(R
n;O)}. Then,

by exactly the same arguments explained in [41, p 114], we have the following corollary of
theorems 3.18, 3.19 and 3.21.

11
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Corollary 3.22. Let C be an open convex cone. Then H ∗o
c is algebraically isomorphic to

both H ′
C∗(R

n;O) and H′
C(T (O)).

We finish this section with two results proved in [47], which will be used in the applications
of section 5.

Theorem 3.23 (ultrahyperfunctional version of edge of the wedge theorem). Let C be an open
cone of the form C = C1 ∪C2, where each Cj , j = 1, 2, is a proper open convex cone. Denote
by ch(C) the convex hull of the cone C. Assume that the distributional boundary values of two
holomorphic functions fj (z) ∈ H ∗o

cj
(j = 1, 2) agree, that is, U = BV (f1(z)) = BV (f2(z)),

where U ∈ H′ in accordance with the theorem 3.18. Then there exists F(z) ∈ H o
ch(C) such

that F(z) = fj (z) on the domain of definition of each fj (z), j = 1, 2.

Theorem 3.24. Let C be some open convex cone. Let f (z) ∈ H ∗o
c . If the boundary value

BV (f (z)) of f (z) in the sense of tempered ultrahyperfunctions vanishes, then the function
f (z) itself vanishes.

4. Wightman functionals for UHFNCQFT and their properties

According to Wightman, the conventional postulates of QFT can be fully reexpressed in terms
of an equivalent set of properties of the vacuum expectation values of their ordinary field
products, called Wightman distributions

Wm(f1 ⊗ · · · ⊗ fm)
def= 〈�o | �(f1) · · · �(fm) | �o〉, (4.1)

where (f1 ⊗· · ·⊗fm) = f1(x1) · · · fm(xm) is considered as an element of S (R4m), and | �o〉
is the vacuum vector, unique vector time-translation invariant of the Hilbert space of states.

Remark 5. To keep things as simple as possible, we will assume that the Wightman
distributions are ‘functions’ Wm(x1, . . . , xm). The reader can easily supply the necessary
test functions.

As a general rule, the continuous linear functionals Wm(x1, . . . , xm) are assumed to
satisfy the following properties:

P1. (Temperedness). The sequence of Wightman functions Wm(x1, . . . , xm) are tempered
distributions in S ′(R4m), for all m � 1. This property is included in the list of properties
for a QFT for technical reasons.

P2. (Poincaré invariance). Wightman functions are invariant under the Poincaré group

Wm(�x1 + a, . . . , �xm + a) = Wm(x1, . . . , xm).

P3. P3 (Spectral condition). The Fourier transforms of the Wightman functions have support
in the region⎧⎨⎩(p1, . . . , pm) ∈ R

4m

∣∣∣∣∣
m∑

j=1

pj = 0,

k∑
j=1

pj ∈ V +, k = 1, . . . , m − 1

⎫⎬⎭ , (SC)

where V + = {(p0,p) ∈ R
4 | p2 � 0, p0 � 0} is the closed forward light cone.

P4. (Local commutativity). This property has origin in the quantum principle that operator
observables �(x) corresponding to independent measurements must commute.

Wm(x1, . . . , xj , xj+1, . . . , xm) = Wm(x1, . . . , xj+1, xj , . . . , xm),

if (xj − xj+1)
2 < 0.

12
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P5. For any finite set fo, f1, . . . , fN of test functions such that fo ∈ C, fj ∈ S (R4j ) for
1 � j � N , one has

N∑
k,�=0

Wk+�(f
∗
k ⊗ f�) � 0.

P6. (Hermiticity). A neutral scalar field must be real valued. This implies that

Wm(x1, x2, . . . , xm−1, xm) = Wm(xm, xm−1, . . . , x1, x2).

Generalizing these properties to NCQFT is not as simple, especially the Lorentz symmetry.
For example, as already mentioned in the introduction, the Lorentz symmetry is not preserved
in NCQFT. Furthermore, the existence of hard infrared singularities in the non-planar sector of
the theory can destroy the tempered nature of the Wightman functions. And more, how can the
property P4 be described in field theory with a fundamental length? In order to answer these
questions, we shall assume a NCFT where the Wightman functionals fulfil a set of properties
which actually will characterize a UHFNCQFT.

4.1. Twisted Poincaré symmetry

In this paper, we will assume that our fields are transforming according to representations
of the twisted Poincaré group [12, 13]. This formalism has the advantage of retaining the
Wigner’s notion of elementary particles6.

When referring to NCQFT one should have in mind the deformation of the ordinary
product of fields. This deformation is performed in terms of the star product extended for
noncoinciding points via the functorial relation [14]

ϕ(x1) � · · · � ϕ(xn) =
∏
i<j

exp

(
i

2
θµν ∂

∂x
µ

i

⊗ ∂

∂xν
j

)
ϕ(x1) · · · ϕ(xn). (4.2)

For coinciding points x1 = x2 = · · · = xn the product (4.2) becomes identical to the
multiple Moyal �-product. We shall consider NCQFT in the sense of a field theory on a
non-commutative spacetime encoded by a Moyal product on the test function algebra.

Definition 4.1 (vacuum expectation values of fields [2]). In a UHFNCQFT the Wightman
functionals in Uc(R

4m), i.e., the m-points vacuum expectation values of fields operators are
defined by

W�
m(z1, . . . , zm)

def= 〈�o | �(z1) � · · · � �(zm) | �o〉. (4.3)

Remark 6. The tempered ultrahyperfunctions W�
m ∈ Uc(R

4m) will be called non-commutative
Wightman functions.

Remark 7. In [5] the Wightman functions were written as follows:

W�̃
m(z1, . . . , zm)

def= 〈�o | �(z1)�̃ · · · �̃�(zm) | �o〉,
where the meaning of �̃ depends on the considered case. In particular, if �̃ = 1, we obtain
the standard form Wm(z1, . . . , zm) = 〈�o | �(z1) · · · �(zm) | �o〉 adopted in [1], which
corresponds to the commutative theory with the SO(1, 1) × SO(2) invariance. On the other
hand, if �̃ = �, this choice corresponds to the Wightman functions introduced in [2]. In

6 Another approach where the full Poincaré group is preserved was proposed by Doplicher–Fredenhagen–Roberts
[55].
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this case, the non-commutativity is manifested not only at coincident points but also in their
neighborhood.

As a consequence of the twisted Poincaré covariance condition of the �-product of
fields [13], the non-commutative Wightman functions W�

m(z1, . . . , zm) ∈ Uc(R
4m) satisfy

the twisted Poincaré transformations (besides of the symmetry SO(1, 1) × SO(2)). Thus, we
have

Theorem 4.2. W�
m(z1, . . . , zm) = W�

m(�z1 + a, . . . ,�zm + a), in the usual distributional
sense.

4.2. Domain of analyticity of non-commutative Wightman functions

Since for non-commutative theories the group of translations is intact, the Wightman functions
only depend on the (m − 1) coordinate differences as in the commutative case. Then, passing
to the difference variables ζi , we obtain, symbolically, that

W�
m(z1, . . . , zm) = W�

m(ζ1, . . . , ζm−1), ζj = zj − zj+1, j = 1, . . . , m − 1.

Applying corollary 3.20 to the ordinary Wightman functions Wm(ζ1, . . . , ζm−1), we obtain
the following important result:

Theorem 4.3. The functions Wm−1(ζ1, . . . , ζm−1) are holomorphic functions of 4(m − 1)

complex variables in a set which contains R
4(m−1) + V+(�θ1 , . . . , �θm−1), where

V+(�θ1 , . . . , �θm−1) = {
(η1, . . . , ηm−1) ∈ R

4(m−1) | ηj = yj + (�θj
, 0) ∈ V+ + (�θj

, 0)
}
,

and satisfy the estimate

|Wm−1(ζ1, . . . , ζm−1)| � C(V ′)
m−1∏
j=1

(1 + |ζj |)N exp
(
h

K,V
m−1
+

(yj )
)
. (4.4)

Proof. The first part of theorem follows immediately from remark 2.18 in [45]. Thus we need
only show that Wm−1(ζ1, . . . , ζm−1) satisfies the estimate (4.4). But, this can be proved by
using theorem 3.19 in order to show that the function Wm−1(ζ1, . . . , ζj−1, ζ

′, ζj+1, . . . , ζm−1)

is a holomorphic function of ζ ′ alone, with the complex variables ζ1, . . . , ζj−1, ζj+1, . . . , ζm−1

being kept fixed. Then, we apply this argument, in turn, to each variable ζj separately. �

Proposition 4.4. In a UHFNCQFT the Wightman functionals in Uc(R
4(m−1)), i.e., the non-

commutative Wightman functions involving the �-product, W�
m−1, coincide with the standard

Wightman functions Wm−1.

Proof. By considering that in terms of complex variables∏
i<j

exp

(
i

2
θµν ∂

∂x
µ

i

⊗ ∂

∂xν
j

)
=

∏
i<j

exp

(
1

2
θµν ∂

∂ζ
µ

i

∧ ∂

∂ζ̄ ν
j

)
,

and since the functions Wm(ζ1, . . . , ζm−1) are holomorphic, then it follows that

W�
m−1(ζ1, . . . , ζm−1) = Wm−1(ζ1, . . . , ζm−1),

and the proof is complete. �
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Corollary 4.5. The non-commutative Wightman functions W�
m−1(ζ1, . . . , ζm−1) are

holomorphic functions of 4(m − 1) complex variables in a set which contains R
4(m−1) +

V+(�θ1 , . . . , �θm−1) and satisfy the estimate

|W�
m−1(ζ1, . . . , ζm−1)| � C(V ′)

m−1∏
j=1

(1 + |ζj |)N exp
(
h

K,V
m−1
+

(yj )
)
.

It is suggestive to see that W�
m−1 has the same form as the standard form Wm−1 in a

UHFNCQFT. In the light of proposition 4.4, where we have as result that �̃ = � = 1, we
conjecture that the possibility of extending the axiomatic approach to the NCQFT in terms
of tempered ultrahyperfunctions is independent of the concrete type of the �̃-product (similar
conclusion was obtained in [5]). In order to support this conjecture, in section 5, we derive
for the UHFNCQFT the validity of some important theorems. These include the existence of
CPT symmetry and the connection between spin and statistics for UHFNCQFT, in the case of
space–space non-commutativity. In what follows, we shall always refer to the functions W�

m−1
in order to include non-commutativity effects not only into the vacuum state, as it happens
with the functions Wm−1.

4.3. Extended local commutativity condition

The existence of a minimum length related to the scale of nonlocality �θ [14] renders
impossible the preservation of the canonical commutation rules since those rules make sense
only in the distance regions greater than �θ . Thus, in order to remedy this difficulty the
local commutativity will be replaced by a distinguished localization property in the sense
of Brüning–Nagamachi [45], called extended local commutativity. This property is defined
as a continuity condition of the expectation values of the field commutators in a topology
associated with a �θ -neighborhood of the light cone.

Let |x|1 be the norm

|x|1 = |x0| + |x|, |x| =
√√√√ 3∑

i=1

(xj )2,

for x = (x0,x) ∈ R
4. Denote

L� = {(x1, x2) ∈ R
8 | |x1 − x2|1 < �θ }.

Define the open set V+ of all strictly timelike points in R
4 by

V+ = {x ∈ R
4 | (x0)

2 − x2 > 0}.
In order to prepare for the definition of the extended local commutativity, we shall consider
functionals which are carried by sets close to R

4 but not contained in R
4. Denote by V �θ the

complex �θ -neighborhood of V+

V �θ = {z ∈ C
4 | ∃x ∈ V+, |Re z − x| + |Im z|1 < �θ }.

Consider the set of all pairs of points in C
4 whose difference belongs to the �θ -neighborhood,

M�θ = {(z1, z2) ∈ C
8 | z1 − z2 ∈ V �θ },

and introduce the space H(M�θ ) consisting of all holomorphic functions on M�θ . Then,
according to Brüning–Nagamachi [45], we formulate the axiom of extended local
commutativity condition as follows.
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Definition 4.6 (extended local commutativity condition). Let f, g be two test functions in
H(T (R4)), then the fields �(f ) and �(g) are said to commute for any relative spatial
separation �′ > �θ of their arguments, if the functional

F = 〈� | [ϕ(f ), ϕ(g)]� | �〉
= 〈� | (ϕ(f ) � ϕ(g) − ϕ(g) � ϕ(f )) | �〉 (4.5)

is carried by the set M�′ = {(z1, z2) ∈ C
8 | z1 − z2 ∈ V �′ }, for any vectors �,� ∈ D0, i.e., if

the functional F can be extended to a continuous linear functional on H(M�′
).

The definition 4.6 can be understood saying that two operators �(f ) and �(g), at two
distinct points of the non-commutative spacetime, cannot be distinguished if the relative spatial
distance between their arguments is less than �θ . In other words, in NCQFT the quantum
fluctuations of the spacetime operationally prevent the exact localization of the events inside
of the minimum area �2

θ . This area is interpreted as the minimum region which observables
can be probed7 [56].

Moreover, it follows from the extended local commutativity condition and from the
propositions 4.3 and 4.4 in [45] that the functional F ∈ Uc(R

4m) defined by

F = W�
m(z1, . . . , zj , zj+1, . . . , zm) − W�

m(z1, . . . , zj+1, zj , . . . , zm),

for any �′ > �θ ,m � 2 and j ∈ {1, . . . , m − 1}, can be extended to a continuous linear
functional on H

(
M�′

j

)
, with M�′

j = {(z1, . . . , zm) ∈ C
4m | zj − zj+1 ∈ V �′ }.

4.4. Properties of non-commutative Wightman functions

The analysis of the preceding results has shown that the sequence of vacuum expectation
values of a NCQFT in terms of tempered ultrahyperfunctions satisfies a number of specific
properties. We summarize these below:

P′
1. W�

0 = 1,W�
m ∈ Uc(R

4m) for n � 1, and W�
m(f ∗) = W�

m(f ), for all f ∈ H(T (R4m)),
where f ∗(z1, . . . , zm) = f (z̄1, . . . , z̄m).

P′
2. The Wightman functionals W�

m are invariant under the twisted Poincaré group.

P′
3. Spectral condition. Since the Fourier transformation of tempered ultrahyperfunctions

are distributions, the spectral condition is not so much different from that of Schwartz
distributions. Thus, for every m ∈ N, there is Ŵ�

m ∈ H ′
V ∗(R

4m, R
4m) [45], where

H ′
V ∗(R

4m, R
4m) = {

V ∈ H ′(R4m, R
4m) | supp(Ŵ�

m) ⊂ V ∗}, (4.6)

with V ∗ being the properly convex cone (SC) defined in P3.

P′
4. Extended local commutativity condition.

P′
5. For any finite set fo, f1, . . . , fN of test functions such that fo ∈ C, fj ∈ H(T (R4j )) for

1 � j � N , one has

N∑
k,�=0

W�
k+�(f

∗
k ⊗ f�) � 0.

7 The bounds on the non-commutative nature of space-time is discussed by X Calmet [56].
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5. CPT, spin statistics and all that in UHFNCQFT

In the preceding sections, we have defined what is meant by NCQFT in terms of tempered
ultrahyperfunctions and assembled some tools to aid in the analysis of its structure. In this
section, these are used to establish some important theorems as the celebrated CPT and spin-
statistics theorems. The proof of these results as given in the literature [7–10] usually seems
to rely on the local character of the distributions in an essential way. In the approach which we
follow the apparent source of difficulties in proving these results is the fact that for functionals
belonging to the space of tempered ultrahyperfunctions the standard notion of the localization
principle breaks down.

Let � be a Hermitian scalar field. For this field, it is well known that in terms of the
Wightman functions, a necessary and sufficient condition for the existence of CPT theorem is
given by

Wm(x1, . . . , xm) = Wm(−xm, . . . ,−x1). (5.1)

Under the usual temperedness assumption, the proof of the equality (5.1) as given by Jost [57]
starts with the weak local commutativity (WLC) condition, namely under the condition that
the vacuum expectation value of the commutator of n scalar fields vanishes outside the light
cone, which in terms of Wightman functions takes the form

Wm(x1, . . . , xm) − Wm(xm, . . . , x1) = 0, for xj − xj+1 ∈ Jm. (5.2)

Jost’s proof that the WLC condition (5.2) is equivalent to the CPT symmetry (5.1) one relies
on the fact that the proper complex Lorentz group contains the total spacetime inversion.
Therefore, the equality Wn(xm, . . . , x1) = Wn(−xm, . . . ,−x1) holds, taking in account the
symmetry property Jm = −Jm in whole extended analyticity domain, by the Bargman–
Hall–Wightman (BHW) theorem. In particular, the BHW theorem has been shown [45]
to be applicable to domains of the form Tm−1 = R

4(m−1) + V+(�
′
1, . . . , �

′
m−1). Then,

W�
m(ζ1, . . . , ζm−1) can be extended to be a holomorphic function on the extended tube

T ext.
m−1 = {(�ζ1, . . . , �ζm−1)) | (ζ1, . . . , ζm−1) ∈ Tm−1,� ∈ L+(C)},

which contains certain real points of the type of the Jost points.
In order to prove that CPT theorem holds in NCQFT, an analogous of the WLC condition

is now formulated:

Definition 5.1. The non-commutative quantum field � defined on the test function space
H(T (R4)) is said to satisfy the weak extended local commutativity (WELC) condition if the
functional

F = W�
m(z1, . . . , zm) − W�

m(zn, . . . , z1)

is carried by set M�′
j = {(z1, . . . , zm) ∈ C

4m | zj − zj+1 ∈ V �′ }.
The WELC condition takes the form W�

m(ζ1, . . . , ζm−1)−W�
m(−ζm−1, . . . ,−ζ1) in terms

of the NC Wightman functions depending on the relative coordinates ζj = zj − zj+1 ∈ V �′
.

Proposition 5.2. Consider W�
m(ζ1, . . . , ζm−1) and W�

m(−ζm−1, . . . ,−ζ1). Then

W�
m(ζ1, . . . , ζm−1) = W�

m(−ζm−1, . . . ,−ζ1),

on their respective domains of holomorphy.

Proof. The idea of the proof follows from the standard strategy. As in [7] suppose that
x1, . . . , xm are such that all the differences xi − xj are spacelike. Then (z1, . . . , zm) /∈ M�′

j .
Hence,

W�
m(ζ1, . . . , ζm−1) = W�

m(−ζm−1, . . . ,−ζ1)
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by definition 5.1. Now, our propose is to show that these are points of holomorphy of both
functions. This is achieved applying the edge of the wedge theorem (theorem 3.23). First,
we note that W�

m(ζ1, . . . , ζm−1) is holomorphic in R
4(m−1) + V+(�

′
1, . . . , �

′
m−1) by corollary

4.5. Furthermore, the functions W�
m(ζ1, . . . , ζm−1) and W�

m(−ζm−1, . . . ,−ζ1) have boundary
values which agree at totally spacelike points in the sense of the strong topology of H′. Hence,
by theorem 3.23 W�

m(−ζm−1, . . . ,−ζ1) is holomorphic at such points. �

Theorem 5.3 (CPT theorem). A non-commutative scalar field theory symmetric under the
CPT-operation � is equivalent to the WELC.

Proof. The CPT invariance condition is derived by requiring that the CPT operator � be
antiunitary—see [7–10]:

〈�� | ��〉 = 〈� | �〉. (5.3)

This means that the CPT operator leaves invariant all transition probabilities of the theory. In
the case of a NCFT, the operator � can be constructed in the ordinary way. Taking the vector
states as 〈� |= 〈�o | and | �〉 = �(zm)� · · ·��(z1) | �o〉 we shall express both sides of (5.3)
in terms of NC Wightman functions. For the left-hand side of (5.3) we can directly use the
CPT transformation properties of the field operators, which for a neutral scalar field is equal
to ��(z)�−1 = �(−z). Using the CPT invariance of the vacuum state, � | �o〉 =| �o〉, the
left-hand side of (5.3) becomes

〈�� | ��〉 = 〈��o | �(�(zm) � · · · � �(z1) | �o〉
= W�

m(−zm, . . . ,−z1). (5.4)

In order to express the right-hand side of (5.3), we take the Hermitian conjugates of the
vectors |�〉 and 〈�| to obtain

〈� | �〉 = W�
m(z1, . . . , zm). (5.5)

Putting together (5.3) with (5.4) and (5.5), we obtain the CPT invariance condition in terms
of NC Wightman functions as

W�
m(z1, . . . , zm) = W�

m(−zn, . . . ,−z1),

which in terms of the NC Wightman functions depending on the relative coordinates ζj reads

W�
m(ζ1, . . . , ζm) = W�

m(ζm−1, . . . , ζ1). (5.6)

Then, without giving more details, it should be clear from the proposition 5.2 that the
arguments of chapter V of [8] apply in our case. Hence, the CPT theorem continues to hold
in UHFNCQFT. �

As it is well known, the Borchers class of a quantum field is a direct consequence of the
CPT theorem. Thus, we have

Theorem 5.4 (Borchers class of quantum fields for a NCQFT). Suppose � is a field satisfying
the assumptions of theorem 5.3 and � is the corresponding CPT -symmetry operator. Suppose
ψ is another field transforming under the same representation of the twisted Poincaré group,
with the same domain of definition. Suppose that the functional 〈�o | �(z1) � · · · � �(zj ) �

ψ(z)��(zj+1)�· · ·��(zm) | �o〉−〈�o | �(zm)�· · ·��(zj+1)�ψ(z)��(zj )�· · ·��(z1) | �o〉
is carried by M�′

j = {(z1, . . . , zm+1) ∈ C
4(m+1) | zj − zj+1 ∈ V �′ }. Then � implements the

CPT symmetry for ψ as well and the fields �, ψ satisfy the weak extended local commutativity
condition.

Proof. The proof is similar to the proof of theorem 3.4 of [4]. �
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Corollary 5.5 (transitivity of the WELC). The weak relative extended local commutativity
property is transitive in the sense that if each of the fields ψ1, ψ2 satisfies the assumptions of
theorem 5.4, then there is a CPT-symmetry operator common to the fields {�, ψ1, ψ2} and by
theorem 5.3 the weak relative extended local commutativity condition is satisfied not only for
{ψ1, ψ2} but also for {�, ψ1, ψ2}.
Theorem 5.6 (spin-statistics theorem). Suppose that � and its Hermitian conjugate �∗ satisfy
the WELC with the ‘wrong’ connection of spin and statistics. Then �(x)�o = �∗(x)�o = 0.

Proof. The arguments of the standard proof apply [7], since the properties of Lorentz group
representations, the existence of Jost points and the analyticity properties of NC Wightman
functions are also available in UHFNCQFT. �

We complete this section with one of the most important results of the axiomatic approach:
the reconstruction theorem. Based in our analysis, we have the following:

Theorem 5.7 (reconstruction theorem to UHFNCQFT). Suppose that the hypotheses of
theorem 5.1 in [45] hold except that instead of the sequence {Wm}m∈N and of the conditions
(R0)−(R5), we have the sequence {W�

m}m∈N and the conditions P′
1−P′

5. Then the conclusions
of theorem 5.1 in [45] again hold.

6. Concluding remarks

In the present paper, we extend the Wightman axiomatic approach to NCQFT in terms of
tempered ultrahyperfunctions. An important hint in favor of this approach comes from the
fact that the class of UHFNCQFT allows for the possibility that the off-mass-shell amplitudes
can grow at large energies faster than any polynomial (such behavior is not possible if fields
are assumed to be tempered only). This is relevant since NCQFT stands as an intermediate
framework between string theory and the usual quantum field theory. Here, we restrict
ourselves to the simplest case, that of a single, scalar, Hermitian field �(x) associated with
spinless particles of mass m > 0. Some results of the ordinary QFT, the existence of the
symmetry CPT and of the spin-statistics connection were proved to hold, if we replace the local
commutativity by an extended local commutativity in the sense of Brüning–Nagamachi [45].
We assume (implicitly) the case of a theory with space–space non-commutativity (θ0i = 0).
There is still a number of important questions to be studied based on the ideas of this paper,
such as the existence of the S-matrix, a representation of the Jost-Lehmann–Dyson-type, the
Reeh–Schlieder property and so on. Furthermore, as it was pointed out in [1], for gauge
theories, in particular the non-commutative QED (NCQED), the questions associated with the
Wightman axioms and their consequences are more involved due to the UV/IR mixing. As
said at the beginning, the existence of hard infrared singularities in the non-planar sector of
the theory, induced by uncancelled quadratic ultraviolet divergences, can result in one kind
of problem: they can destroy the tempered nature of the Wightman functions. This result
reinforces the hypothesis that the infrared issue in NCFT must be dealt with another approach.
In this case, the ultrahyperfunctional approach to NCQFT could be an interesting step in order
to resolve the problem of the UV/IR mixing in NCFT. This topic is under investigation8. We
hope to report our conclusions on this issue in a forthcoming paper.

As a last remark, we note the result obtained in [15] where it has been showed that the
star commutator of : φ(x) � φ(y) : and : φ(y) � φ(x) : does not obey the microcausality even

8 We are grateful to the referee for drawing our attention for the importance of studying the problem of the UV/IR
mixing via ultrahyperfunctional formalism.
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for the case in which θ0i = 0. However, we see that this is not the case here. The condition
of extended local commutativity being defined as a continuity condition of the expectation
values of the field commutators in a topology associated with a complex neighborhood of the
light cone, it is not applied to the tempered fields. Hence, for NCQFT in terms of tempered
ultrahyperfunctions no violation of Einstein’s causality is ever involved.
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